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ABSTRACT
This paper focuses on the lifetime analysis of parallel systems consisting of Weibull
components with independent failures and covariates. The performance of the parameter
estimates of two and three-component parallel systems at different values of the shape
parameter, !, are compared and some confidence interval procedures are analyzed via a
coverage probability study for m = 2, using simulated data.
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THE WEIBULL AND THE EXTREME VALUE DISTRIBUTION
There are numerous studies involving parallel systems in reliability. Many multivariate
models have been developed, in particular, for the life testing of multi-component
systems. Unfortunately, they may not be compatible with the lifetime analysis of medical
data, which often involves other factors that affect survival times, more popularly known as
covariates or concomitant variables. The estimation of the parameters of multivariate
models is also usually very difficult and complicated, especially if it involves the estimation
of a high number of parameters. More details on parallel systems can be found in Høyland
and  Rausand (1994), Kececioglu (1991) and in most books on reliability analysis.

Early work on parallel system models in the biomedical field was done by Gross et al.
(1972), but this model does not include covariates and censored lifetimes. The same
model was also discussed by Høyland and  Rausand  (1994)  to study the reliability and
mean time to failure of standby units in a parallel system. Elandt-Johnson and Johnson
(1980) described another parallel system using the multi-hit models of Carcinogenesis via
the Weibull distribution. Baklizi (1997) analyzed the likelihood inference in a parallel
system regression model involving both censored and uncensored data. Arasan and Daud
(2004) extended his work to analyze the efficiency of the parameter estimates of the same
model with multiple covariates.

The Weibull distribution accommodates increasing, decreasing and also constant
hazard rates as it reduces to the exponential as a special case. It is well known for modeling
lifetimes and for its equivalence to extreme value distribution. The Weibull distribution can
also be extended to include covariates by allowing its scale parameter, " or shape parameter
# to depend on these variables, where " > 0 and #  > 0. The density and survivor functions
of the Weibull are,

      f t t t t( ) ( ) exp ,= $[ ] >$"# " "# #1 0 (1)
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       S t t t( ) exp ( ) ,= $ >[ ]" # 0 . (2)

We know that if the lifetime, T has a Weibull distribution, then Y = log T has the
extreme minimum value distribution, whose parameters could easily be modified to
obtain the parameters of its Weibull counterpart. If % has extreme minimum value
distribution, denoted as G(0,1), its density and survivor functions are,

f (&) = e(& – exp(&)), – ' < & < ', (3)

S(&) = e–exp(&), – ' < & < ' (4)

Suppose x' = (x0, x1, ..., xp) is the vector of covariate values, where x0 = 1 and (' = ((0, (1,
... , (p, are unknown parameters. If " = e–('x, then the log lifetime, can be written as Y =

('x + !%, where  ! #= 1 . Since 
  

Y x$ (

!

'
 is equal to %, its distribution is extreme minimum

value with the following distribution function,

F(y, (, x) = 1 – e    
$ $exp '( )y x(

! , – ' < y < ' (5)

If the shape parameter of the Weibull distribution ! equals 1, then the Weibull is
reduced to an exponential distribution. Having exponential lifetime means that the
components of the parallel system would have constant failure rates and not strictly
monotonic ones as in the Weibull case.

PARALLEL WEIBULL SYSTEM WITH COVARIATES
A parallel system can function as long as at least one of its components is still functioning.
If the unit failures in a parallel system are assumed to be independent, then, this simply
means that failure in one component will not affect the hazard rate of the remaining
components. Although, this assumption may seem unrealistic, especially in the biomedical
area, it can be very useful in making an initial interpretation of the data because the
statistical analysis is much simpler and faster.

For a parallel system consisting of m identical and independent components, the
probability of survival is equivalent to the probability of at least one component still
operating. If tk is the survival time of component k, where k = 1, 2, ... m, the time to failure
of the system t is then,

t = max {t1, t2, ..., tm}.

It follows that the survival function of the entire system is,

    S t P T t P t t F tT kk

m m
( ) ( ) – ( ) ( )= > = ) = $ [ ]=

*1 1
1

(6)

For the ith observation, if yi = log ti and x'i = (xi0, xi1, ..., xip), the density and survival
functions of the system are,
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LIKELIHOOD EQUATIONS AND ESTIMATION
Suppose we have both censored and uncensored lifetimes for i + 1, 2, ..., n observations,
accompanied by the information on p covariates. Let us say the following indicator
variables were used to identify whether the data was censored or otherwise,
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(9)

The log-likelihood function of the full sample of a system consisting of m identical and
independent Weibull components and p covariates is,

     L s f y s S yi i i ii

n( , ) log ( ) ( )log ( )( ! = + ${ }=8 11
.

It follows that if   Zi
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The first and second derivatives of the log-likelihood function would be as follows,
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The inverse of the observed information matrix, which can be obtained from the second
partial derivatives of the log-likelihood function evaluated at   (̂  and   ̂!  provides us with
the estimators for the variance and covariance,

     (11)

Simulation Study
Study Design

A simulation study was conducted to see how well the estimation procedure works with
the parallel Weibull regression model with two components and two covariates at
different values of sigma. In addition, we were also interested in investigating how the
proportion of censoring in the data affected the parameter estimates. The study was
conducted by using 1000 simulations, each with sample size of 100. The survival times
were obtained by drawing 100 random numbers from the uniform distribution between
0 and 1, U(0,1). These numbers were later used to produce the log survival time, yi 

. For
the ith  observation,

    y x ui i
m= + $( !' (log( log(1- )))
1

. (12)

The value of 1 was used as the parameters of (0, (1 and (2. As the parameter of !,
three different values of 0.5, 0.8 and 1.15 were used to enable a comparative study. We
know that # is the shape parameter of the Weibull distribution and its value determines
whether the distribution has an increasing, constant or decreasing failure rate. Since,

  ! #= 1  a value of ! less than 1 would indicate an increasing hazard rate while value of
more than 1 would indicate otherwise.

In addition, a simulation study for a three-component system with two covariates was
carried out for ! = 0.5 to see how the bias, standard error and root mean square error
(rmse) changes with increase in the number of components. The two covariates used in
the model were simulated from the Bernoulli and standard normal distribution. Six
different values of approximate censoring proportions (cp), between 0 and 0.5 were used
to investigate the relationship between censoring proportion and efficiency of the
parameter estimates. A value of cp=0.3 means that approximately 30% of the survival
times were censored before the actual failure times.

The censoring time for the ith observation, ci ~ exp(µ), is where the value of µ would
be adjusted to obtain the desired approximate censoring proportion in our data. If ti
=exp(yi) then ti will be censored at ci according to the following,
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Parameter Estimation and Calculations

The estimates of ( and ! can be obtained by solving the likelihood equations using any
iterative procedure for solving non linear equations. In this research, the maximum
likelihood estimators of all the parameters were computed using the Newton Raphson
iterative method, which was implemented using the FORTRAN programming language.
In this section the true parameter values were used as the starting values for all the
estimates.

Simulation Results and Conclusion

The results of the simulation study are given in the following section. Both bias and
standard error contribute to the average error size of an estimator, thus the rmse,

    s e bias. 2 2+  is used to measure the average overall error of the parameter estimates. Tables
1-3 display the bias and standard error of the estimates at different values of !.

The values of the rmse are illustrated in Figs. 1-2. It is clear that both standard error
and rmse of all parameter estimates increase with the increase in censoring proportion.
This was expected because increase in censoring proportion means less data with
complete failure times and thus the likelihood contribution would depend more on the
survival function and censored times instead of the density function and the exact failure
times.

As for the bias, although it seems to increase with the increase in censoring
proportion, the trend is not very clear, probably because of the increasing standard error
values. It should be borne in mind that a low value of bias at higher levels of censoring
proportion does not imply that the resulting estimates are better than the ones at lower
censoring proportion. This is because the increasing standard error values at higher
censoring proportion suggest that the estimates are still typically far from the real value
even though the average is close to the parameter value.

However, none of the bias values were significant at the 5% level. In addition, the
rmse and standard error also appear to be higher at higher values of !. The reason for
this can be explained as follows. In the original Weibull distribution the events will be
sparse for smaller #  so the parameters will be estimated less efficiently when # is smaller.
Similarly, with the parallel Weibull model the parameters will be estimated less efficiently
when ! is larger, because   ! #= 1 .

TABLE 1
Bias and standard error when ! = 0.5

              Bias                       Std. Error

cp     (̂0     (̂1     (̂2   ̂!     (̂0     (̂1     (̂2   ̂!

0.0  0.000581 0.000075 0.001155 -0.007104 0.057150 0.074871 0.038976 0.038511
0.1  0.001473 -0.002033 0.000003 -0.007816 0.058883 0.079985 0.041491 0.039747
0.2  0.000442 -0.000598 0.001274 -0.007355 0.060513 0.083162 0.043113 0.040508
0.3  -0.000347 -0.001084 0.000610 -0.008624 0.062857 0.087451 0.047459 0.041316
 04  0.003094 -0.001318 0.001884 -0.009578 0.065999 0.100208 0.054448 0.042908
0.5  0.002043 -0.002524 0.002759 -0.011823 0.070825 0.107113 0.063674 0.044408
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There were no serious problems encountered in the estimation process although
there were a few samples with convergence problems when the censoring proportion in
the data was high, usually when cp=0.5. Since efficiency of an estimator depends on both
precision and accuracy, based on the rmse measures obtained, we conclude that the
estimation procedure is most efficient when the censoring proportion in the data and the
value of ! are both low.

Table 4 compares the bias, standard error and rmse rmse of the parameter estimates
when m = 3, where m is the number of components in the system. It appears that the
bias values increase whereas the standard error values decrease with an increase in the
number of components in the system. The rmse, which is the total error, seems to
decrease with the increase in number of components in the system. However, at high
censoring proportions some of the rmse values for m = 3 are higher than m = 2.

CONFIDENCE INTERVAL ESTIMATES
It is rather common to resort to confidence interval estimates based on the asymptotic
normality of maximum likelihood estimates when it is impossible to compute the exact
confidence intervals of the parameters of a model. This is also known as basing the
intervals on the Wald statistic or simply Wald intervals. Other popular interval estimates
are those based on the likelihood ratio test and the score test. In this section, we will be
focusing on intervals based on the Wald statistics and recommend suggestions on how to
improve these estimates using parameterizations. The method will be assessed by
conducting a coverage probability study.

TABLE 3
Bias and standard error when ! = 1.15

Bias Std. Error

cp     (̂0     (̂1     (̂2   ̂!     (̂0     (̂1     (̂2   ̂!

0.0 0.000662 0.000578 0.003038 -0.015808 0.131393 0.173225 0.089642 0.087425
10.0 0.001260 -0.002929 0.001837 -0.019161 0.134265 0.185366 0.096405 0.087970
20.0 0.008061 -0.005796 -0.001241 -0.023398 0.139283 0.196294 0.098891 0.0888667
30.0 0.003024 0.002277 0.013622 -0.022709 0.139601 0.206300 0.110511 0.090894
40.0 0.001900 0.008285 0.016151 -0.024623 0.151129 0.229006 0.126382 0.099512
50.0 0.000750 0.017021 0.017841 -0.021945 0.156191 0.245132 0.131873 0.132947

TABLE 2
Bias and standard error when ! = 0.80

Bias Std. Error

cp     (̂0     (̂1     (̂2   ̂!     (̂0     (̂1     (̂2   ̂!

0.0 0.000772 0.001110 0.001402 -0.011430 0.091543 0.119754 0.062798 0.061781
0.1 0.001261 -0.003418 0.002256 -0.012283 0.093123 0.126553 0.065503 0.063672
0.2  -0.000451 -0.003492 0.000325 -0.015526 0.098181 0.130567 0.070673 0.063754
0.3 0.000202 -0.000566 0.002043 -0.002524 0.100325 0.137630 0.077110 0.065856
04 0.005657 -0.002862 0.003901 -0.028687 0.106841 0.149999 0.084543 0.068156
0.5 0.002043 -0.005297 0.007270 -0.030128 0.108170 0.169781 0.091523 0.071096
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Fig. 1: Values of rmse for     (̂0  and     (̂1  vs. cp

• ! = 0.50     ! = 0.80    ! = 1.15 • ! = 0.50     ! = 0.80    ! = 1.15

    (̂0     (̂1

Fig. 2: Values of rmse for     (̂2
 and   ̂!  vs. cp

! = 0.50 ! = 0.80 ! = 1.15 ! = 0.50 ! = 0.80 ! = 0.15

    (̂2   ̂!

TABLE 4
Comparison between different number of component models

m =2 m = 3

Est. cp Bias Std.err rmse Bias Std.err rmse

    (̂0 0.0 0.000581 0.057150 -0.057153 0.002730 0.050849 0.050922
0.2 -0.000442 0.060513 -0.0060515 0.016328 0.055214 0.057578
0.4 -0.003094 -0.065999 -0.066071 0.033482 0.057741 0.066746

    (̂1 0.0 0.000075 0.074871 0.074871 0.000326 0.063108 0.063109
0.2 -0.000598 0.083162 0.083164 0.010462 0.071568 0.072329
0.4 -0.001318 0.100208 0.100217 0.019873 0.085562 0.087839

    (̂2 0.0 0.001155 0.038976 0.038993 0.001009 0.032872 0.032887
0.2 0.001274 0.043113 0.043132 0.009371 0.038748 0.039865
0.4 0.001884 0.054448 0.054480 0.018654 0.049361 0.052768

  ̂! 0.0 -0.007104 0.038511 0.039161 -0.007110 0.037757 0.038421
0.2 -0.007355 0.040508 0.041170 -0.019685 0.038561 0.043295
0.4 -0.009578 0.042908 0.043964 -0.027013 0.039846 0.048139
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Wald Confidence Intervals

Let   ̂&  be the maximum likelihood estimator for parameter & and l(&) the log-likelihood
function of &. Under mild regularity conditions,   ̂&   is asymptotically normally distributed
with mean & and covariance matrix, I –1(&) where I (&) is the Fisher information matrix
evaluated at the true value of the parameter, & (Cox and Hinkley, 1979). The matrix,I
(&) which is not available can be replaced by the observed information matrix, i(  ̂&) whose
(j, k)th element can be obtained from the second partial derivatives of the log-likelihood
function evaluated at   ̂&  as given below,

    
i jk

l

j k
(ˆ ) ( )̂

ˆ ˆ& &
& &

= $+
,
- .

/
09

9 9

2
,  j, k = 0, 1 ..., p. (14)

The estimate of var(  ̂& j)is then given by the (j, j)th element of i –1 (  ̂& ) If     z1 2$ :  is the   ( )1 2$ :

quartile of the standard normal distribution, then the 100(1– :)% confidence interval
for &j is given by the following,

    
ˆ (ˆ ) ˆ (ˆ )& & & & &: :j jj j j jjz i z i$ < < +

$

$

$

$

1 2

1
1 2

1 . (15)

Application of the Wald Intervals
The parallel system model with two covariates discussed in the previous section has a total
of 4 parameters to be estimated,  (0, (1, (2 and !. Estimates of var(  (̂ j) and var(  ̂! ) can
be obtained from [i(  (̂ ,   ̂! )]–1. The 100(1 – :) % confidence interval for (j and ! where
j = 0, 1, 2 are,

     (16)

      
(17)

It is expected that Wald intervals work rather well for the covariate parameters but not
so well for ! , the shape parameter. The Wald interval for ! will most probably be highly
asymmetrical and will not have desirable statistical properties due to a sharp boundary in
the parameter space. This is usually the case with other similarly bounded parameters,
such as the odds ratio, as reported by Hosmer and Lemeshow (1999).

By applying a suitable parameterization such as 1/! or log !, it is expected that the
confidence interval estimates will have better symmetry in its left and right estimated
error probabilities because the parameterization will help in achieving more symmetry in
the log-likelihood function. The following part deals with a suitable parameterization for
! and intervals based on these transformations.

Parameterization for !
The usual procedure for applying any parameterization is rather straightforward. If a
transformation ; = ; (!) is chosen, then   ̂! , the maximum likelihood estimator for ! must
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be obtained and transformed to the ; scale,   ̂ ( ˆ ); ; != . Then calculate i(  ̂; ) which is the
observed information matrix evaluated at   ̂; ,

    
    
i i(ˆ ) ( ˆ)

'( ˆ)
; !

; !
=

[ ]2 . (18)

where ;'(  ̂! ) is the first derivative of ; with respect to !. The 100(1 – :)% confidence
interval for ; is,

(19)

where         can be obtained from the inverse of the observed information matrix,     [ ]i(ˆ ); $1

The equivalent confidence interval for ! can be obtained by transforming the confidence
interval for ; back to the original scale. For example, if ; = log ! then the transformation
back is ! =  exp(;).

Simulation Study
Study Design

A simulation study was conducted using 2000 samples of size n=100, 150, 200 and 250 to
evaluate the performance of the confidence intervals based on the Wald statistics. Since
there are 4 parameters to be estimated in this model and data is censored, a larger
sample size is required in order to have any meaningful results. Samples were generated
from the parallel Weibull regression model with two components and two covariates
when ! = 0.5. The samples were produced and censored using methods similar to the
ones described in section (2.2.2). Two levels of approximate censoring proportions,
cp=0.10 and cp=0.30 were used to see how the level of censoring affected the interval
estimates. The values of cp=0.10 and cp=0.30 were chosen to represent both low and high
levels of censoring proportions respectively.

These samples were then used to obtain the maximum likelihood estimators of the
parameter and the estimators of their variances to carry out the coverage probability
study. The coverage probability is the probability that an interval contains the true
parameter value. For parameters, (0, (1 and (2 only the coverage probability was analyzed
using the untransformed Wald interval estimates. For the parameter ! the coverage
probability study was conducted using both the untransformed and two transformed
Wald interval estimates. The first parameterization is using ; = log ! and the other is
using   ; != 1 .

Parameter Estimation and Calculations

The parameter estimation process is similar to that described in section (2.2.2). The
coverage probability study was conducted by calculating the left and right estimated error
probabilities for each of the parameter estimates. The estimated left(right) error probability
is calculated by adding the number of times the left(right) endpoint was more(less) than
the true parameter value divided by the total number of samples, N.

For the covariate parameters (j , where j = 0, 1, 2, the left and right error probabilities
are,
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  Left =  #

  Right = #

For the untransformed !

  Left =   #

  Right = #

For the transformed ; = ; (!),

  Left =   #

  Right = #

When the nominal error probability : is 0.05(0.1), the ideal left and right error
probabilities should be equal to   

:
2 = 0.025(0.05). Similarly, the ideal total error probabilities

should be equal to : = 0.05(0.1). Following Doganaksoy and  Schmee  (1993), if : was
the nominal error probability, then the standard error of the estimated error probability

  ̂:  assuming that the observed and nominal error are close, is approximately,     
: :( )1$

N
.

Using a normal approximation, a 99.75% confidence interval for :  would be   ̂:  ±
2.58 s.e(  ̂: ). So, if this interval contains :, then the total error probability,   ̂:  is considered
to have actually converged to the nominal error probability,: . If the total error
probability is greater than :+2.58 s.e(  ̂: ) then the method is termed anticonservative and
if it is lower than :$2.58 s.e(  ̂: ), the method is termed conservative. The estimated error
probabilities are called symmetric when the larger error probability is less than 1.5 times
the smaller one.

The overall performance of the different methods will be judged based on their total
number of anticonservative, conservative and asymmetrical intervals. When an interval is
conservative (anticonservative), it means that it generates coverage probability that is
greater (smaller) than  (1 – :). So, a conservative (anticonservative) confidence interval
procedure leads to confidence intervals, which are generally wider (shorter) than they
need to be. Thus, a conservative interval is still considered valid and a higher penalty is
attached to an anticonservative interval. In addition, methods that are robust in handling
censored data and behave well at different nominal levels are also of interest.

Simulation Results and Conclusion

Tables 5-8 give the results of the simulation study at different levels of censoring
proportion and two levels of : when ! = 0.5. The Wald procedure seems to work rather
well for parameters (0, (1 and (2. When : is 0.05, all total error probabilities of the
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parameters seem to be close to the nominal level except in a few cases when the sample
size is low, n = 100, where there were two anticonservative intervals even at low censoring
proportion, as shown in Table 5.

Unexpectedly, there are fewer anticonservative and asymmetrical intervals when the
censoring proportion is high and n is low compared to when censoring proportion is low.
This is probably caused by the combined effect of both censoring and small sample size
on the estimated parameters and its standard errors. The small sample size and high
censoring proportion cause the intervals to be much wider (due to larger standard errors
of the parameter estimates).

In addition, the high level of censoring in the data generated estimates that were very
biased resulting in intervals that sometimes accidentally included the true parameter
value. The coverage probabilities were also better at higher nominal levels, :. When
censoring proportion and  were high, there were no anticonservative, conservative or
asymmetrical intervals.

For the parameter, ! , as expected the untransformed Wald procedure generated
intervals that were highly asymmetrical. This method also generated more anticonservative
intervals compared to the transformed methods. From the two different parameterizations
of ! the transformation   ; != 1  produced more symmetrical intervals than the transformation
; = log !.

The transformation   ; != 1  worked very well especially when : = 0.05 because in
addition to being more symmetrical, it also did not generate any conservative or
anticonservative intervals. However, it generated some conservative and asymmetrical
intervals when both : and censoring proportion were high as shown in Table 8. The
untransformed Wald method generated many anticonservative intervals whereas the
transformation ; = log ! produced many conservative intervals. Both the untransformed
Wald and the transformation method ; = log ! failed to generate a single symmetrical
interval.

TABLE 5
Estimated error probabilities of ( at : = 0.05, A = "Anticonservative"

cp = 0.10 cp = 0.03

& n Left Right Total Left Right Total
Error Error Error Error Error Error

(
0

100 0.0330 0.0240 0.0570 0.0285 0.0300 0.0585
150 0.0265 0.0225 0.0490 0.0265 0.0195 0.0460
200 0.0285 0.0265 0.0550 0.0225 0.0260 0.0485
250 0.0275 0.0280 0.0555 0.0245 0.0240 0.0485

(
1

100 0.0380 0.0285 0.0665A 0.0325 0.0330 0.0655A

150 0.0325 0.0280 0.0605 0.0295 0.0295 0.0590
200 0.0345 0.0250 0.0595 0.0250 0.0255 0.0505
250 0.0315 0.0250 0.0565 0.0275 0.0235 0.0510

(
2

100 0.0300 0.0330 0.0630A 0.0250 0.0305 0.0555
150 0.0290 0.0315 0.0605 0.0255 0.0290 0.0545
200 0.0220 0.0355 0.0575 0.0235 0.0350 0.0585
250 0.0255 0.0320 0.0575 0.0275 0.0290 0.0565
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TABLE 6
Estimated error probabilities of ( at : = 0.10, A = "Anticonservative"

cp = 0.10 cp = 0.03

& n Left Right Total Left Right Total
Error Error Error Error Error Error

(
0

100 0.0620 0.0435 0.1055 0.0555 0.0505 0.1060
150 0.0570 0.0420 0.0990 0.0520 0.01445 0.0965
200 0.0570 0.0475 0.1045 0.0455 0.0500 0.0955
250 0.0515 0.0515 0.1030 0.0465 0.0480 0.0945

(
1

100 0.0635 0.0580 0.0665A 0.0575 0.0595 0.1170
150 0.0555 0.0515 0.1070 0.0510 0.0505 0.1015
200 0.0625 0.0495 0.1120 0.0555 0.0465 0.1020
250 0.0530 0.0420 0.0950 0.0570 0.0425 0.0995

(
2

100 0.0555 0.0605 0.1160 0.0480 0.0570 0.1050
150 0.0560 0.0620 0.1180A 0.0515 0.0585 0.1100
200 0.0575 0.0585 0.1160 0.0455 0.0620 0.1075
250 0.0485 0.0610 0.1095 0.0485 0.0605 0.1090

In fact, on average, the untransformed Wald method was almost five times more
asymmetrical than the same method using   ; != 1 , when ! was low. The confidence
intervals for the ; = log ! transformation were almost twice as asymmetrical as those for

  ; != 1 . The transformation,   ; != 1 , should be preferred because the other two
transformations gave very asymmetrical intervals. Thus,   ; != 1 , in the original Weibull
distribution works best.

The transformation,   ; != 1 , worked very well especially when : =0.05 because in
addition to being more symmetrical, it also did not generate any conservative or
anticonservative intervals. However, it generated some conservative and asymmetrical
intervals when both : and censoring proportion were high as shown in Table 8. The

TABLE 7
Estimated error probabilities of ! at : = 0.05, A = "Anticonservative" C="Conservative"

; = ! ; = log !   ; != 1

 cp n Left Right Total Left Right Total Left Right Total
Error Error Error Error Error Error Error Error Error

100 0.0065 0.0570 0.0635A 0.0120 0.0420 0.0540 0.0190 0.0265 0.0455
150 0.0080 0.0430 0.0510 0.0105 0.0355 0.0460 0.0165 0.0290 0.0455

0.1 200 0.0110 0.0535 0.0645A 0.0155 0.0430 0.0585 0.0220 0.0305 0.0525
250 0.0120 0.0490 0.0490 0.0610 0.0170 0.0400 0.0570 0.0210 0.0555
100 0.0025 0.0390 0.0415 0.0085 0.0280 0.0365C 0.0190 0.0265 0.0455
150 0.0035 0.0410 0.0445 0.0070 0.0290 0.0360C 0.0165 0.0290 0.0455

0.3 200 0.0050 0.0380 0.0430 0.0105 0.0280 0.0385 0.0220 0.0305 0.0525
250 0.0060 0.0415 0.0475 0.0070 0.0305 0.0375 0.0210 0.0345 0.0555

01. jst4/2008 1/21/09, 16:4294



95Pertanika J. Sci. & Technol. Vol. 16 (2) 2008

Parallel Weibull Regression Model

TABLE 8
Estimated error probabilities of ! at : = 0.10, A = "Anticonservative" C="Conservative"

; = ! ; = log !   ; != 1

cp n Left Right Total Left Right Total Left Right Total
Error Error Error Error Error Error Error Error Error

100 0.0215 0.0980 0.1195A 0.0245 0.0820 0.1065 0.0305 0.0660 0.0965
150 0.0215 0.0815 0.1030 0.0260 0.0665 0.0925 0.0335 0.0530 0.0865

0.1 200 0.0295 0.0815 0.1110 0.0340 0.0735 0.1075 0.0380 0.0650 0.1030
250 0.0310 0.0820 0.1130 0.0345 0.0745 0.1090 0.0400 0.0650 0.1050
100 0.0150 0.0695 0.0845 0.0220 0.0550 0.0770C 0.0270 0.0400 0.0670C

150 0.0130 0.0715 0.0845 0.0190 0.0610 0.0800C 0.0255 0.0485 0.0740C

0.3 200 0.0185 0.0670 0.0855 0.0230 0.0575 0.0805C 0.0290 0.0450 0.0740C

250 0.0210 0.0695 0.0905 0.0240 0.0615 0.0855 0.0315 0.0535 0.0850

untransformed Wald method generated many anticonservative intervals whereas the
transformation ; = log !  produced many conservative intervals.  Both the untransformed
Wald and the transformation method ; = log !  failed to generate a single symmetrical
interval.

In fact, on average, the untransformed Wald method was almost five times more
asymmetrical than the same method using   ; != 1  when : was low. The confidence
intervals for the ; = log ! transformation were almost twice as asymmetrical as those for

  ; != 1 . Thus, the transformation,   ; != 1 , should be preferred because the other two
transformations gave very asymmetrical intervals. So, basically   ; != 1  in the original
Weibull distribution works best.
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